
Lecture 4

Integral Transport Equations

1 A 1-D Integral Equation for the Angular Flux

The primary purpose of this section is to derive an integral equation for the angular flux in

1-D slab geometry under the assumptions of isotropic scattering, an isotropic distributed

source, isotropic incident angular fluxes, and constant cross-sections. These assumptions

are not necessary, but they result in considerable simplifications. We begin by solving the

following equation on the interval [xL, xR]:

µ
∂ψ

∂x
+ σtψ =

σs

4π
φ(x) +

Q0

4π
, (1)

under the further assumption that ψ(xL, µ) = φL

4π
for µ > 0, and that ψ(xR, µ) = φR

4π
for

µ < 0. Using the integrating factor approach we proceed as follows:

∂ψ

∂x
+

σt

µ
ψ =

σsφ+Q0

4πµ
,

exp

(
σtx

µ

)
∂ψ

∂x
+ exp

(
σtx

µ

)
σtx

µ
ψ = exp

(
σtx

µ

)
σsφ+Q0

4πµ
,

∂

∂x

[
exp

(
σtx

µ

)
ψ

]
= exp

(
σtx

µ

)
σsφ+Q0

4πµ
. (2)
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Integrating Eq. (2) from xL to x for µ > 0, we obtain

ψ(x, µ) exp

(
σtx

µ

)
− φL

4π
exp

(
σtxL

µ

)
=

∫ x

xL

exp

(
σtx

′

µ

)
σsφ(x

′) +Q0(x
′)

4πµ
dx′ .

Integrating Eq. (2) from x to xR for µ < 0, we obtain

φR

4π
exp

(
σtxR

µ

)
− ψ(x, µ) exp

(
σtx

µ

)
=

∫ xR

x

exp

(
σtx

′

µ

)
σsφ(x

′) +Q0(x
′)

4πµ
dx′ .

So the final solution for µ > 0 is

ψ(x, µ) =
φL

4π
exp

[
σt

µ
(xL − x)

]
+

∫ x

xL

exp

[
σt

µ
(x′ − x)

]
σsφ(x

′) +Q0(x
′)

4πµ
dx′ , (3)

and the final solution for µ < 0 is

ψ(x, µ) =
φR

4π
exp

[
σt

µ
(xR − x)

]
−

∫ xR

x

exp

[
σt

µ
(x′ − x)

]
σsφ(x

′) +Q0(x
′)

4πµ
dx′ . (4)

Note that that Eqs. (3) and (4) actually constitute an integral equation for the angular

flux since the scalar flux is a function of the angular flux. In principal, one can iteratively

solve this equation using the “order-of-scatter” approach described in Lecture 3.

2 A 1-D Integral Equation for the Scalar Flux

The purpose of this section is to derive a 1-D integral equation for the scalar flux. We start

with the 1-D integral equation for the angular flux. In particular, we first integrate Eq. (3)
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over all µ > 0:

φ+(x) = 2π

∫ 1

0

φL

4π
exp

[
σt

µ
(xL − x)

]
dµ+

2π

∫ 1

0

∫ x

xL

exp

[
σt

µ
(x′ − x)

]
σsφ(x

′) +Q0(x
′)

4πµ
dx′ dµ , (5)

where φ+ denotes the contribution to the scalar flux from µ > 0. To evaluate the angular

integrals in Eq. (5), we make the substitution z = 1
µ
. Then dµ = −z−2dz, so

φ+(x) =

∫ ∞

1

φL

2
exp [σt(xL − x)z] z−2 dz +

∫ ∞

1

[∫ x

xL

exp [σt(x
′ − x)z]

σsφ(x
′) +Q0(x

′)
2z

dx′
]

dz

=

∫ ∞

1

φL

2
exp [σt(xL − x)z] z−2 dz +

∫ x

xL

σsφ(x
′) +Q0(x

′)
2

[∫ ∞

1

exp [−σt(x
′ − x)z] z−1 dz

]
dx′

= φL
1

2
E2 [σt(x − xL)] +

∫ x

xL

(σsφ(x
′) +Q0(x

′))
1

2
E1 [σt(x

′ − x)] dx′ , (6)

where

En(x) =

∫ ∞

1

exp (−xz) z−n dz , for all non-negative n. (7)

The family of functions, En(x), are called the exponential integrals. Their properties are

described in Appendix A.

We next integrate Eq. (4) over all µ < 0:

φ−(x) = 2π

∫ 0

−1

φR

4π
exp

[
σt

µ
(xR − x)

]
dµ −

2π

∫ 0

−1

∫ xR

x

exp

[
σt

µ
(x′ − x)

]
σsφ(x

′) +Q0(x
′)

4πµ
dx′ dµ , (8)
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where φ− denotes the contribution to the scalar flux from µ < 0. To evaluate the angular

integrals in Eq. (5), we make the substitution z = − 1
µ
. Then dµ = z−2dz, and we eventually

obtain

φ−(x) = φR
1

2
E2 [σt(xR − x)] +

∫ xR

x

(σsφ(x
′) +Q0(x

′))
1

2
E1 [σt(x

′ − x)] dx′ , (9)

Adding Eqs. (6) and (9), we obtain the desired integral equation:

φ(x)−
∫ xR

xL

σsφ(x
′)
1

2
E1 (σt|x′ − x| ) dx′ = φL

1

2
E2 [σt(x − xL)] +

φR
1

2
E2 [σt(xR − x)] +

∫ xR

xL

Q0(x
′)
1

2
E1 (σt|x′ − x| ) dx′ , (10)

The assumption of isotropic scattering is necessary to obtain an integral equation for the

scalar flux that contains only the scalar flux itself.

3 A 3-D Integral Equation for the Angular Flux

The purpose of this section is to derive a 3-D integral equation for the angular flux. We

begin with the 3-D integro-differential transport equation. We will initially assume con-

stant cross-sections but admit the possibility of an anisotropic total source (scattering plus

inhomogeneous):

−→
Ω · −→∇ψ(

−→
r ,

−→
Ω ) + σtψ(

−→
r ,

−→
Ω ) = Q(−→r ,

−→
Ω ) , (11)

where Q denotes the total source. From basic calculus, we know that the operator,
−→
Ω · −→∇

represents the directional derivative in the direction
−→
Ω . We will now exploit this fact
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by defining a local coordinate system about the point
−→
r , as shown in Fig. 1. The local

coordinates are defined at the point,
−→
r , and consist of a pathlength variable, s, and the

direction,
−→
Ω . In particular,

ψ(s,
−→
Ω ) ≡ ψ(

−→
r s,

−→
Ω ) , (12)

where

−→
r s =

−→
r − s

−→
Ω . (13)

There are several things to note here. The first is that the angular variable,
−→
Ω , is playing

a dual role as a spatial and angular variable. The second is that we have defined s so

that it increases along the direction −−→
Ω rather than

−→
Ω . This follows from the fact that

we want positive values of s to correspond to points,
−→
r s, that are upstream of the point,

−→
r , because only the upstream points contribute to the angular flux solution at

−→
r in the

direction,
−→
Ω . This orientation of the coordinate, s, is not really necessary, but it makes

the derivation easier to understand. Transforming Eq. (10) to the local frame, we obtain

− ∂

∂s
ψ(s,

−→
Ω ) + σtψ(s,

−→
Ω ) = Q(s, −→Ω ) . (14)

Multiplying Eq. (14) by −1, we get

∂

∂s
ψ(s,

−→
Ω )− σtψ(s,

−→
Ω ) = −Q(s, −→Ω ) .

Multiplying the above equation by the integrating factor, exp(−σts), we obtain

∂

∂s

{
ψ(s,

−→
Ω ) exp(−σts)

}
= −Q(s, −→Ω ) exp(−σts) ,
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Figure 1: The local spatial coordinate system at the point
−→
r . Note that

−→
r s =

−→
r − s

−→
Ω .

This is a form of local spherical coordinate system with
−→
Ω playing the role of both a spatial

and angular variable.

The function, sb(
−→
r ,

−→
Ω ), is defined to be the distance from point

−→
r to the outer boundary

of the domain along the direction −−→
Ω . Integrating the previous equation in s from s = 0

to s = sb, we get

ψ(sb,
−→
Ω ) exp(−σtsb)− ψ(0,

−→
Ω ) = −

∫ sb

0

Q(s, −→Ω ) exp(−σts) ds .
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Remembering that s = 0 corresponds to the point
−→
r , we solve the previous equation for

ψ at that point:

ψ(
−→
r ,

−→
Ω ) = ψ(sb,

−→
Ω ) exp(−σtsb) +

∫ sb

0

Q(s, −→Ω ) exp(−σts) ds .

Adding the explicit global spatial dependence in the previous equations yields our desired

integral equation for the angular flux:

ψ(
−→
r ,

−→
Ω ) = ψ(

−→
r − sb

−→
Ω ,

−→
Ω ) exp(−σtsb) +

∫ sb

0

Q(−→r − sb

−→
Ω ,

−→
Ω ) exp(−σts) ds . (15)

This is an integral equation because the total source includes the scattering source, which is

a function of the angular flux itself. We can account for spatially-dependent cross-sections

by noting that the integrating factor for this case is

exp

[
−

∫ s

0

σt(s
′)ds′

]
,

and that Eq. (15) becomes

ψ(
−→
r ,

−→
Ω ) = ψ(

−→
r − sb

−→
Ω ,

−→
Ω ) exp

[
−

∫ sb

0

σt(s
′) ds′

]
+

∫ sb

0

Q(−→r − s
−→
Ω ,

−→
Ω ) exp

[
−

∫ s

0

σt(s
′) ds′

]
ds . (16)

Equation (16) reveals the fundamental nature of radiation transport. The angular flux

solution at a point,
−→
r , in the direction,

−→
Ω , arises entirely from the incident flux in direction

−→
Ω and the sources in direction

−→
Ω at points upstream of

−→
r on the line corresponding to
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[0, s]. This line is called the characteristic. The incident flux makes a contribution to the

solution that is attenuated in proportion to the total (integrated) number of mean-free-

paths between the incident flux and the solution point. Similarly, the source at each point

on the characteristic makes a differential contribution to the solution that is attenuated in

proportion to the total (integrated) number of mean-free-paths between the source and the

solution point. Note that in a sourceless void, the angular flux solution is simply equal to

the incident angular flux. Furthermore, it is not difficult to see that, in a sourceless void,

the angular flux solution is constant along each and every characteristic.

4 A 3-D Integral Equation for the Scalar Flux

To obtain an integral equation for the scalar flux, we need simply assume isotropic scattering

and integrate Eq. (16) over all directions. For simplicity, we assume an isotropic total

source:

φ(
−→
r ) =

∫
4π

ψ(
−→
r − sb

−→
Ω ,

−→
Ω ) exp

[
−

∫ sb

0

σt(s
′) ds′

]
dΩ +

∫
4π

∫ sb

0

Q0(
−→
r − s

−→
Ω )

4π
exp

[
−

∫ s

0

σt(s
′) ds′

]
ds dΩ . (17)

However, we can obtain a much more interesting form of this equation if we assume zero

incident fluxes and spatially-constant cross-sections:

φ(
−→
r ) =

∫
4π

∫ sb

0

Q0(
−→
r − s

−→
Ω )

4π
exp (−σts) ds dΩ .
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We first divide and multiply the above equation by s2:

φ(
−→
r ) =

∫
4π

∫ sb

0

Q0(
−→
r − s

−→
Ω )

4πs2
exp (−σts) s

2 ds dΩ . (18)

Note that our local spatial coordinate system is actually a spherical coordinate system, and

that the differential volume associated with point
−→
r s is

dV = s2 ds dΩ .

Because of the dual role played by
−→
Ω , the integration over direction is also an integration

over space. Thus we can re-express Eq. (18) as follows:

φ(
−→
r ) =

∫
D

Q0(
−→
r

′
)

4π‖−→r ′ − −→
r ‖2

exp
(
−σt‖−→r

′ − −→
r ‖

)
dV ′ , (19)

where D denotes the problem domain. This is the well-known “point-kernel” equation for

volumetric isotropic sources.

Another useful kernel is the point kernel for volumetric anisotropic sources. The deriva-

tion is identical to that for the isotropic point kernel except that one begins with an

anisotropic source rather than an isotropic source, i.e.,

φ(
−→
r ) =

∫
4π

∫ sb

0

Q(−→r − s
−→
Ω ,

−→
Ω ) exp (−σts) ds dΩ .

The final result is

φ(
−→
r ) =

∫
D

Q(−→r ′
,
−→
Ω 0)

‖−→r ′ − −→
r ‖2

exp
(
−σt‖−→r

′ − −→
r ‖

)
dV ′ , (20a)
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where

−→
Ω 0 =

−→
r − −→

r
′

‖−→r − −→
r

′‖
. (20b)

With a space-dependent cross-section, Eq. (20a) becomes

φ(
−→
r ) =

∫
D

Q(−→r ′
,
−→
Ω 0)

‖−→r ′ − −→
r ‖2

exp
[
−τ(

−→
r

′
,
−→
r )

]
dV ′ , (21a)

where τ(
−→
r

′
,
−→
r ) represents the total number of mean-free-paths between points

−→
r

′
and

−→
r , i.e.,

τ(
−→
r

′
,
−→
r ) =

∫ 1

0

exp
{
−σt

[−→
r + (

−→
r

′ − −→
r )s

]}
ds . (21b)

Finally, we can obtain a kernel for incident surface fluxes by considering only the bound-

ary term in Eq. (17):

φ(
−→
r ) =

∫
4π

ψ(
−→
r − sb

−→
Ω ,

−→
Ω ) exp

[
−

∫ sb

0

σt(s
′) ds′

]
dΩ . (22)

Dividing and multiplying the integrand in Eq. (22) by s2
b , we get

φ(
−→
r ) =

∫
4π

ψ(
−→
r − sb

−→
Ω ,

−→
Ω )

s2
b

exp

[
−

∫ sb

0

σt(s
′) ds′

]
s2

bdΩ . (23)

It is shown in Appendix B that

s2
b dΩ = |−→Ω · −→n | dA , (24)

where
−→
n is the outward-directed surface normal. Thus we can re-write Eq. (23) in surface

kernel form as

φ(
−→
r ) =

∮
Γ

ψ(
−→
r

′
,
−→
Ω 0)|

−→
Ω 0 · −→n |

‖−→r ′ − −→
r ‖2

exp
[
−τ(

−→
r

′
,
−→
r )

]
dA′ , (25)
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where Γ denotes the surface of the transport domain.

Combining Eqs. (21a) and (25), we get the full kernel form of Eq. (17):

φ(
−→
r ) =

∮
Γ

ψ(
−→
r

′
,
−→
Ω 0)|

−→
Ω 0 · −→n |

‖−→r ′ − −→
r ‖2

exp
[
−τ(

−→
r

′
,
−→
r )

]
dA′ +

∫
D

Q(−→r ′′
,
−→
Ω 0)

‖−→r ′′ − −→
r ‖2

exp
[
−τ(

−→
r

′′
,
−→
r )

]
dV ′′ . (26)
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